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Abstract

The time-harmonic solution of the linear elastic wave equation is needed for a variety of applications. The typical pro-
cedure for solving the time-harmonic elastic wave equation leads to difficulties solving large-scale indefinite linear systems.
To avoid these difficulties, we consider the original time dependent equation with a method based on an exact controlla-
bility formulation. The main idea of this approach is to find initial conditions such that after one time-period, the solution
and its time derivative coincide with the initial conditions.

The wave equation is discretized in the space domain with spectral elements. The degrees of freedom associated with the
basis functions are situated at the Gauss–Lobatto quadrature points of the elements, and the Gauss–Lobatto quadrature
rule is used so that the mass matrix becomes diagonal. This method is combined with the second-order central finite dif-
ference or the fourth-order Runge–Kutta time discretization. As a consequence of these choices, only matrix–vector prod-
ucts are needed in time dependent simulation. This makes the controllability method computationally efficient.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The linear theory of elasticity [1] models mechanical properties of solids assuming small deformations. This
theory describes several phenomena, including seismic waves in the earth and the passing of ultrasonic waves
through materials in order to detect flaws. Efficient solution methods, such as domain decomposition [2–5],
fictitious domain [6], and multigrid [7,8], have been developed for solving the elasticity problem. These meth-
ods are typically used when the solution is based directly on the complex-valued time-harmonic equations and
low-order finite elements (see e.g. [9–11]).
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mailto:sanna.monkola@jyu.fi
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To obtain accurate results, the discretization mesh needs to be adjusted to the wavelength. This leads to a
large-scale indefinite linear system for which it is difficult to develop efficient iterative solution methods. Fur-
thermore, the error increases as the wavenumber increases, which makes finding an accurate solution even
more challenging. Thus, several modifications of the classical finite element method (FEM) have been used
to maintain the accuracy of the solution. For instance, these are methods such as ultra weak variational for-
mulation (UWVF) [12,13], Galerkin generalized least-squares [14], discontinuous enrichment [15], discontin-
uous Galerkin [16,17], and spectral collocation [18].

Our objective is to solve the problem in a manner that does not require solution of an indefinite linear sys-
tem. For this purpose we use a controllability algorithm [19–22]. The main idea of the algorithm is to return to
the time dependent wave equation and find initial conditions such that after one time-period the solution and
its time derivative coincide with the initial conditions. This is why the controllability problem is reformulated
as a least-squares optimization problem. This problem is solved with a preconditioned conjugate gradient
algorithm.

We use the spectral element method (SEM) [23,24] for spatial discretization. It provides for a convenient
treatment of complex geometries and varying material properties. The basis functions are higher-order
Lagrange interpolation polynomials, and the nodes of these functions are placed at the Gauss–Lobatto collo-
cation points. The integrals in the weak form of the equation are evaluated with the corresponding Gauss–
Lobatto quadrature formulas. As a consequence of this choice, spectral element discretization leads to diag-
onal mass matrices significantly improving the computational efficiency of the explicit time-integration used.
Moreover, when using higher-order elements, same accuracy is reached with fewer degrees of freedom than
when using lower-order finite elements.

The paper is organized as follows. The statement of the problem and some preliminaries are presented in
Section 2. We give the exact controllability formulation in Section 3 and discretization schemes in Section 4.
We discretize the elastic wave equation in space domain with spectral elements in Section 4.1. Time discreti-
zation is accomplished using central finite differences in Section 4.2.1 and the fourth-order Runge–Kutta
scheme in Section 4.2.2. In Section 5, we present the control problem and a preconditioned conjugate gradient
algorithm that is related to the one developed in [25] for the linear acoustic wave equation. In Sections 5.1 and
5.2, we compute the gradient of the functional, an essential point of the method, using the adjoint state tech-
nique. The algebraic multigrid method [26,27] is used for preconditioning the conjugate gradient algorithm in
Section 5.3. Numerical experiments concerning the propagation of time-harmonic waves show the efficiency of
the algorithm in Section 6.
2. The time-harmonic elastic wave equation

In an elastic, homogeneous, and isotropic body X � R2 with density q, the propagation of time-harmonic
waves with angular frequency x is governed by the Navier equation
�x2qu�r � rðuÞ ¼ 0 in X; ð1Þ

where u denotes the displacement field uðxÞ ¼ ðu1ðxÞ; u2ðxÞÞT, which depends on the spatial variable
x ¼ ðx1; x2ÞT 2 R2. The strains are related to the displacements by the linearized strain tensor �, which is
defined by
�ðuÞ ¼ 1

2
ðruþ ðruÞTÞ: ð2Þ
The stress tensor rðuÞ is then expressed as
rðuÞ ¼ qðc2
p � 2c2

s Þðr � uÞI þ 2qc2
s �ðuÞ: ð3Þ
Coefficients cp and cs represent the speed of the pressure waves (P-waves) and the speed of the shear waves
(S-waves), respectively. The P-waves have a compressional motion, while the motion of the S-waves is perpen-
dicular to the direction of wave propagation [28].

The boundary oX surrounding the domain X is divided into two distinct parts (see Fig. 1). The boundary C0

is assumed to be rigid,
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Fig. 1. Domain X, and the two parts of the boundary oX ¼ C0 [ Cext of the domain X.
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u ¼ 0 on C0; ð4Þ

whereas on the artificial boundary Cext we impose the absorbing boundary condition
ixqBuþ rðuÞn ¼ gext: ð5Þ

Here B is a symmetric positive definite 2� 2-matrix [29,30] given by
B ¼
cpn2

1 þ csn2
2 ðcp � csÞn1n2

ðcp � csÞn1n2 csn2
1 þ cpn2

2

 !
; ð6Þ
where n ¼ ðn1; n2ÞT is the outward pointing normal vector on Cext.

3. The exact controllability problem

Solving the time-harmonic equation given by (1), (4) and (5) is equivalent to finding a time-periodic solution
for the corresponding time dependent wave equation
q
o2U

ot2
�r � rðUÞ ¼ 0; in Q ¼ X� ð0; T Þ; ð7Þ

U ¼ 0; on c0 ¼ C0 � ð0; T Þ; ð8Þ

qB
oU

ot
þ rðUÞn ¼ Gext; on cext ¼ Cext � ð0; T Þ; ð9Þ
where U ¼ ðU 1;U 2ÞT and Gext ¼ ðGext1;Gext2ÞT. In addition to the system (7)–(9), we take into account the
initial conditions
Uðx; 0Þ ¼ e0;
oUðx; 0Þ

ot
¼ e1: ð10Þ
The time-period corresponding to the angular frequency x is given by T ¼ 2p
x , and the T-periodic solution

can be achieved by controlling the initial conditions such that the terminal conditions are equal to the initial
conditions (10) at the end of the computation.

For the weak formulation of the problem (7)–(10), we introduce the function space
W ¼ fy 2 H 1ðXÞ � H 1ðXÞ such that y ¼ 0 on C0g: ð11Þ

By multiplying Eq. (7) with any test function v in the space W, using Green’s formula, and substituting

the boundary conditions, we get the following weak formulation: Find U satisfying UðtÞ 2W for any
t 2 ½0; T � and
Z

X
q

o2U

ot2
� vdxþ

Z
X

rðUÞ : �ðvÞdxþ
Z

Cext

qB
oU

ot
� vds ¼

Z
Cext

Gext � vds ð12Þ
for any v 2W and t 2 ½0; T �.
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Introducing the Hilbert space Z for the initial conditions e ¼ ðe0; e1ÞT 2 Z by
Z ¼W� L2ðXÞ; ð13Þ
we formulate the exact controllability problem as follows: find initial conditions e ¼ ðe0; e1ÞT such that the
weak formulation (12) holds with the terminal conditions
Uðx; T Þ ¼ e0;
oUðx; T Þ

ot
¼ e1: ð14Þ
4. Discretization

Discretization methods play a large role in the efficiency of the controllability method. The key factor in
developing efficient solution methods is the use of high-order approximations without computationally
demanding matrix inversions. We attempt to meet these requirements by using the spectral element [23]
method for space discretization.

As, for instance, in [31], we locate the degrees of freedom corresponding to the basis functions at the Gauss–
Lobatto integration points of the elements. With the Gauss–Lobatto integration rule, this makes the mass
matrices diagonal without reducing the order of accuracy. Thus, the inversion of the mass matrix is a trivial
and computationally efficient operation.

Since we have returned to the time dependent wave equation, also time discretization is needed. For time
discretization we compare the central finite difference (CD) scheme with the fourth-order accurate Runge–
Kutta (RK) method. With respect to the time step Dt, the CD method is second-order accurate, while the
RK method is fourth-order accurate. Both methods lead to an explicit time-stepping scheme, and only
matrix–vector products are needed in time dependent simulation. These properties are essential for computa-
tional efficiency. The drawback is that the schemes need to satisfy the stability condition, which limits the
length of the time step. In addition, the computational effort of the RK method is approximately four times
that of the central finite difference scheme at each time step.
4.1. Spatial discretization

The physical domain X is divided into Ne quadrilateral elements Xi; i ¼ 1; . . . ;Ne, such that X ¼
SNe

i¼1Xi.
For the discrete formulation, we define the reference element Xref ¼ ½0; 1�2 and affine mappings
Gi : Xref ! Xi such that GiðXrefÞ ¼ Xi. We define the finite dimensional space
Wr
h ¼ fy ¼ ðy1; y2Þ 2W such that ykjXi

� Gi 2 Qr; k ¼ 1; 2g; ð15Þ
where Qr is the set of polynomials of order r in each variable in space. The order r ¼ 1 corresponds to bilinear
finite elements.

Denoting by UðtÞ the global vector containing the nodal values of the displacement Uðx; tÞ at time t, we
write the semi-discrete equation in the form
M
o2UðtÞ

ot2
þ S

oUðtÞ
ot
þKUðtÞ ¼ F ; ð16Þ
where M, S, and K are 2� 2 block matrices and F is a block vector as follows:
M ¼
M11 0

0 M22

� �
; S ¼

S11 S12

S21 S22

� �
; K ¼

K11 K12

K21 K22

� �
; F ¼

F 1

F 2

� �
:
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The components of these block forms are
ðM11Þij ¼
Z

X
qujui dx;

ðM22Þij ¼
Z

X
qujui dx;

ðS11Þij ¼
Z

Cext

qðcpn2
1 þ csn2

2Þujui ds;

ðS12Þij ¼
Z

Cext

qðcp � csÞn1n2ujui ds;

ðS21Þij ¼
Z

Cext

qðcp � csÞn1n2ujui ds;

ðS22Þij ¼
Z

Cext

qðcpn2
2 þ csn2

1Þujui ds;

ðK11Þij ¼
Z

X
qðc2

p � 2c2
s Þ

ouj

ox1

oui

ox1

þ 2qc2
s

ouj

ox1

oui

ox1

þ 1

2

ouj

ox2

oui

ox2

� �� �
dx;

ðK12Þij ¼
Z

X
qðc2

p � 2c2
s Þ

ouj

ox2

oui

ox1

þ qc2
s

ouj

ox1

oui

ox2

� �
dx;

ðK21Þij ¼
Z

X
qðc2

p � 2c2
s Þ

ouj

ox1

oui

ox2

þ qc2
s

ouj

ox2

oui

ox1

� �
dx;

ðK22Þij ¼
Z

X
qðc2

p � 2c2
s Þ

ouj

ox2

oui

ox2

þ 2qc2
s

1

2

ouj

ox1

oui

ox1

þ
ouj

ox2

oui

ox2

� �� �
dx;

ðF 1Þi ¼
Z

Cext

Gext1ui ds;

ðF 2Þi ¼
Z

Cext

Gext2ui ds;
where i; j ¼ 1; . . . ; bN . By bN we denote the total number of Gauss–Lobatto points in the space discretization,
which is the number of degrees of freedom (DOF) in each space variable.
4.2. Time discretization

The time discretization of the semi-discrete equation is performed with the central finite differences (CD) in
Section 4.2.1 and with the fourth-order Runge–Kutta (RK) method in Section 4.2.2. Since the mass matrix M
is diagonal, explicit time-stepping with central finite differences or the Runge–Kutta scheme requires only
matrix–vector multiplications. After dividing the time interval ½0; T � into N time steps, each of size
Dt ¼ T=N , applying the appropriate time discretization into the semidiscretized form (16), and taking into
account the initial conditions (10), we obtain matrix form of the fully discrete state equation.
4.2.1. Central finite difference method

The spectral element approximation in space is combined with the standard second-order central finite dif-
ference scheme in time by replacing the time derivatives in the semidiscretized form (16) at time iDt by the
following approximations
o
2UðiDtÞ

ot2
� Uiþ1 � 2Ui þUi�1

Dt2
;

oUðiDtÞ
ot

� Uiþ1 �Ui�1

2Dt
; i ¼ 0; . . . ;N ; ð17Þ
where Ui is the vector U at time iDt. Taking into account the initial conditions (10), we obtain the fully discrete
state equation, which can be represented in the matrix form
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sCDðe; ŷðeÞÞ ¼

I

C0 M

B C D

. .
. . .

. . .
.

B C D

B C D

0BBBBBBBBB@

1CCCCCCCCCA

U0

U1

..

.

..

.

UN

UNþ1

0BBBBBBBBBB@

1CCCCCCCCCCA
�

I 0

0 DtB

0 0

..

. ..
.

..

. ..
.

0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
e0

e1

� �
� Dt2

0
1
2
F 0

F 1

..

.

..

.

FN

0BBBBBBBBBB@

1CCCCCCCCCCA
¼ 0; ð18Þ
where ŷ ¼ ðU0;U1; . . . ;UN ;UNþ1ÞT contains the vectors Ui, the initial condition is e ¼ ðe0; e1ÞT; and F i is
the vector F at time t ¼ iDt. The matrix blocks C0, B, C and D are given by the formulas
C0 ¼
Dt2

2
K�M; ð19Þ

D ¼Mþ Dt
2
S; ð20Þ

C ¼ Dt2K� 2M; ð21Þ

B ¼M� Dt
2
S; ð22Þ
while I is the identity matrix. The form (18) is further used to derive the adjoint state equation in Section 5.

4.2.2. Fourth-order Runge–Kutta method

The state equation (16) can be presented as a system of differential equations
oy

ot
¼ f ðt; yðtÞÞ; ð23Þ
where y ¼ ðU;VÞT is a vector of time-stepping variables U and V ¼ oU
ot , and the function f ðt; yðtÞÞ ¼

ðf1ðt;U;VÞ; f2ðt;U;VÞÞT has components
f1ðt;U;VÞ ¼ V; ð24Þ
f2ðt;U;VÞ ¼ �M�1ðSVþKU� F Þ: ð25Þ
In the fourth-order Runge–Kutta method, the solution y at the ith time step can be presented as
yi ¼ yi�1 þ 1

6
ðk1 þ 2k2 þ 2k3 þ k4Þ; ð26Þ
where yi ¼ ðUi; oUi

ot Þ
T contains the displacement vector Ui and its derivative Vi ¼ oUi

ot at time t ¼ iDt,
i ¼ 1; . . . ;N . The initial condition is given by y0 ¼ e ¼ ðe0; e1ÞT; and kj ¼ ðkj1; kj2ÞT; j ¼ 1; 2; 3; 4; are
the gradient estimates as follows:
k11

k12

 !
¼

Dtf1ðiDt;Ui;ViÞ
Dtf2ðiDt;Ui;ViÞ

 !
; ð27Þ

k21

k22

 !
¼

Dtf1ðiDt þ Dt
2
;Ui þ k11

2
;Vi þ k12

2
Þ

Dtf2ðiDt þ Dt
2
;Ui þ k11

2
;Vi þ k12

2
Þ

 !
; ð28Þ

k31

k32

 !
¼

Dtf1ðiDt þ Dt
2
;Ui þ k21

2
Vi þ k22

2
Þ

Dtf2ðiDt þ Dt
2
;Ui þ k21

2
Vi þ k22

2
Þ

 !
; ð29Þ

k41

k42

 !
¼

Dtf1ðiDt þ Dt;Ui þ k31;V
i þ k32Þ

Dtf2ðiDt þ Dt;Ui þ k31;V
i þ k32Þ

 !
: ð30Þ
In other words, in order to get the gradient estimates (27)–(30), the function f is evaluated at each time step
four times by using the formulas (24) and (25) and then the successive approximation of y is calculated by the
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formula (26). To make the application of the adjoint equation technique in Section 5 more convenient, we
present the fully discrete state equation in the case of the Runge–Kutta time discretization as
sRKðe; ŷðeÞÞ ¼

I

N I

. .
. . .

.

N I

N I

0BBBBBB@

1CCCCCCA

y0

y1

..

.

yN�1

yN

0BBBBBBB@

1CCCCCCCA�
I

0

0

..

.

0

0BBBBBB@

1CCCCCCAe�

0bF 1

..

.

bF N�1bF N

0BBBBBB@

1CCCCCCA ¼ 0; ð31Þ
where ŷ ¼ ðy0; y1; . . . ; yN�1; yN ÞT includes the vectors yi ¼ ðUi; oUi

ot Þ
T, e ¼ ðe0; e1ÞT contains the initial values,

and the matrix N and the vector bF i are defined by
N ¼ �

bC
2bC
2bCbC

0BBBB@
1CCCCA

T
IbB IbB I

2bB I

0BBB@
1CCCA
�1

2bB
2bB
2bB
2bB

0BBBB@
1CCCCA� I ; ð32Þ

bF i ¼ �

bC
2bC
2bCbC

0BBBB@
1CCCCA

T
IbB IbB I

2bB I

0BBB@
1CCCA
�1 bD i�1bDi�1

2bDi�1
2bDi

0BBBB@
1CCCCA: ð33Þ
The matrix blocks bC and bB and the vector blocks bDi are given by the formulas
bC ¼ � 1
6
I 0

0 � 1
6
I

 !
;

bB ¼ 0 � Dt
2
I

Dt
2
M�1K Dt

2
M�1S

 !
;

bDi ¼ DtM�1F i

0

 !
:

The block-matrix form (31) of the fully discrete state equation with the RK time-stepping is analogous to the
state Eq. (18).

5. Control problem

In order to solve the exact controllability problem, we use the least-squares formulation
min
e2Z

Jðe; ŷðeÞÞ; ð34Þ
where ŷðeÞ solves Eqs. (7)–(10) and
Jðe; ŷðeÞÞ ¼ 1

2
ðyN � eÞT

K 0

0 M

� �
ðyN � eÞ ð35Þ
is the discretized objective function. Solving the minimization problem (34) is equivalent to finding initial con-
ditions such that the gradient of the objective function (35) is zero. This can be done by a conjugate gradient
algorithm. In order to implement the algorithm, we have to compute the derivative of the objective function
(35).

The state equations (18) and (31) can be represented in the generic form sðe; ŷðeÞÞ ¼ 0; and by the adjoint
equation technique we see that
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dJðe; ŷðeÞÞ
dek

¼ oJðe; ŷÞ
oek

� ẑT osðe; ŷÞ
oek

; k ¼ 0; 1; ð36Þ
where ẑ contains the vectors of the adjoint state variable at time iDt. The vector ẑ is the solution of the adjoint
equation
osðe; ŷÞ
oŷ

� �T

ẑ ¼ oJðe; ŷÞ
oŷ

� �T

: ð37Þ
By s0ðe; ŷðeÞÞ ¼ 0 we denote the state equation ((18) or (31)) in the special case with F i ¼ 0 for all i.
5.1. The adjoint equation with the central finite difference method

In the matrix form corresponding to (18), the adjoint state equation is given by
I C0 B

M C B

D . .
. . .

.

. .
. . .

.
B

D C

D

0BBBBBBBBBB@

1CCCCCCCCCCA

P0

P1

..

.

..

.

PN

PNþ1

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

0

..

.

0
oJ

oUN�1

oJ
oUN

oJ
oUNþ1

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð38Þ
where
oJ

oUN�1
¼ 1

2Dt
M e1 �

oUN

ot

� �
; ð39Þ

oJ

oUNþ1
¼ 1

2Dt
M

oUN

ot
� e1

� �
; ð40Þ

oJ

oUN ¼ KðUN � e0Þ: ð41Þ
The gradient components are then the following:
dJðe; ŷðeÞÞ
de0

¼ Kðe0 �UN Þ þ P0; ð42Þ

dJðe; ŷðeÞÞ
de1

¼M e1 �
oUN

ot

� �
þ DtBP1: ð43Þ
5.2. The adjoint equation with the fourth-order Runge–Kutta method

The adjoint equation corresponding to the state Eq. (31) is
I N
T

I N
T

. .
. . .

.

I N
T

I

0BBBBBBB@

1CCCCCCCA

z0

z1

..

.

zN�1

zN

0BBBBBB@

1CCCCCCA ¼
0

0

..

.

0
oJ
oyN

0BBBBBBB@

1CCCCCCCA; ð44Þ
where zi ¼ ðPi; oPi

ot Þ
T contains the solution of the adjoint equation and its time derivative at t ¼ iDt,

i ¼ N � 1; . . . ; 0, and in addition we have
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oJ
oyN
¼

KðUN � e0Þ
M oUN

ot � e1

� �0@ 1A:

In the case of the fourth-order Runge–Kutta scheme, the gradient components are
dJðe; ŷðeÞÞ
de0

¼ Kðe0 �UN Þ þ P0; ð45Þ

dJðe; ŷðeÞÞ
de1

¼M e1 �
oUN

ot

� �
þ oP0

ot
: ð46Þ
5.3. Preconditioned conjugate gradient method

We solve the least-squares problem with the following conjugate gradient (CG) algorithm:

Algorithm 1. Preconditioned CG algorithm

Compute the initial value e0 ¼ ðe0
0; e

0
1Þ

T.
Solve the state equation sðe0; ŷðe0ÞÞ ¼ 0.

Solve the adjoint state equation ðosðe0;ŷðe0ÞÞ
oŷðe0Þ Þ

T
ẑ ¼ ðoJðe0;ŷðe0ÞÞ

oŷðe0Þ Þ
T.

Compute the gradient g ¼ ðg0; g1Þ
T by the formulas (42) and (43) or (45) and (46).

Solve linear system with the preconditioner Lw ¼ �g.
Set c0 ¼ �ðw; gÞ, c ¼ c0 and i ¼ 1.

Repeat until
ffiffiffi
c
c0

q
< e
Solve the state equation s0ðw; ŷðwÞÞ ¼ 0.

Solve the adjoint state equation ðosðw;ŷðwÞÞ
oŷðwÞ Þ

T
ẑ ¼ ðoJðw;ŷðwÞÞ

oŷðwÞ Þ
T
:

Compute the gradient update v ¼ ðv0; v1ÞT by the formulas (42) and (43) or (45) and (46).
Compute g ¼ c

ðw;vÞ.
ei ¼ ei�1 þ gw.
g ¼ gþ gv.
Solve linear system with the preconditioner Lv ¼ �g.
c ¼ 1

c, c ¼ �ðv; gÞ, c ¼ cc.
w ¼ vþ cw, i ¼ iþ 1.
Smooth initial approximations e0 ¼ ðe0
0; e

0
1Þ

T for the algorithm are computed with a transition procedure,
which is presented in [32]. Values of the control variables e at the ith iteration are denoted by ei

0 and ei
1.

Each conjugate gradient iteration step requires computation of the gradient of the least-squares functional,
rJ , which involves the solution of the state equation (18) or (31) and the corresponding adjoint equation (38)
or (44), the solution of a linear system with the preconditioner, and some other matrix–vector operations.

The solution of a linear system with the block-diagonal preconditioner, which we have chosen to be
L ¼
K 0

0 M

� �
; ð47Þ
requires the solution of systems with the stiffness matrix K and the diagonal mass matrix M. Efficient solution
of linear systems with the matrix K is critical for the overall efficiency of the control method. At this stage, we
use a modification of Kickinger’s [33] algebraic multigrid (AMG) introduced in [26]. As the name of the meth-
od indicates, a number of different grid levels are used on the domain, ranging between fine and coarse levels.
A sequence of linear problems
Kl ~wl ¼ ~gl ð48Þ
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is generated, corresponding to grid levels l ¼ 0; . . . ; ~k, where ~k represents the coarsest level. Each AMG
iteration starts with the finest level matrix K0, right hand side vector ~g0, and an approximation ~w0. For a
particular level l, the residual is given by ~rl ¼ ~gl �Kl ~wl. This is used as the basis of a correction equation
~wl ¼ ~wl þ ~el. The error ~el is related to the residual by Kl~el ¼ ~rl. Unlike the classical geometric multigrid meth-
ods [7,8], in the AMG the actual coarsening of the given mesh is not needed for finding coarser grid levels.

The coarsening, i.e., selection of the unknowns for coarser levels, is based on the graph of the stiffness
matrix, rather than on the actual values stored in the stiffness matrix. This approach ensures fast computation
of coarser level components. The coarsening process operates in a geometric fashion by sequentially choosing
a coarse node and eliminating the neighboring nodes of the graph. In selecting the unknowns for coarser lev-
els, the primary criterion is to take the node with minimum degree when eliminations have taken into account.
The secondary criterion is to follow the original node numbering.

The use of the AMG methods for spectral elements has recently been studied in [34]. The number of con-
nections between unknowns of the problem increases when higher-order elements are used. In this case, the
coarsening strategy described above leads to unacceptably coarse systems and the convergence factor of the
AMG degrades rapidly as the order of the approximation polynomials increases. We overcome this problem
by employing a graph constructed so that unknowns are connected to each other as if low-order finite elements
were used in the discretization process. Only the unknowns corresponding to the nearest neighboring Gauss–
Lobatto points are connected to each other. Additionally, in vector valued problems it is necessary to prevent
mixture of various types of unknowns also on coarser levels. This is achieved by giving the method an initial
graph where the sets of graph nodes corresponding to different types of unknowns are not interconnected.

The grid transfer operators are the restriction operator eR and the prolongation operator eP. The matrices
Kl, which are used at multigrid levels l ¼ 0; . . . ; ~k, are set as an initialization step of the AMG algorithm. For
this purpose we need the restriction operator eRlþ1

l from the fine level l to the coarse level ðlþ 1Þ
eRlþ1
l ¼ Rlþ1

l 0

0 Rlþ1
l

 !
; ð49Þ
where the components of the restriction matrices Rlþ1
l are
ðRlþ1
l Þij ¼

1 for a fine grid point j which is a coarse grid point i;
1
k for a fine grid point j which is a neighbor of coarse grid

point i and has k neighboring coarse grid points;

0 otherwise:

8>>><>>>: ð50Þ
When the fine level matrix Kl is known, the coarse grid operator is given by the Galerkin formula
Klþ1 ¼ eRlþ1

l KlðeRlþ1
l Þ

T. The prolongation operator ePl
lþ1 from the coarse level ðlþ 1Þ to the fine level l is chosen

to be the transpose of the restriction.
ePl
lþ1 ¼ ðeRlþ1

l Þ
T
:

As a smoother of the AMG we have used successive over-relaxation (SOR), with over-relaxation parameter
1.2, unless other mentioned. One iteration of the SOR is used for pre- and post-smoothing. Additionally,
in the beginning of every multigrid iteration, four iterations of the SOR are used to smooth the solution ini-
tially. The so called W-cycle [7,35] is utilized as a multigrid iteration until the residual norm of the solution is
smaller than 10�6.

When solving the state equation (18) or (31), M�1 is the only matrix inversion which is involved in time-
stepping. Since the matrix M is diagonal, it is inverted simply by inverting each of its diagonal elements. This
requires only 2bN floating point operations, which is the number of degrees of freedom in the space discreti-
zation. The operation count of a matrix–vector product with any one of the matrices M, M�1, S, or S�1 (or
some linear combination of these) is of order OðbN Þ. In the matrix–vector multiplication involving the sparse
stiffness matrix K, only non-zero matrix entries are multiplied, which requires on the order of r2 bN operations.
Besides these, some additions and multiplications are needed at each time step. Thus, solving the state equa-
tion needs Oðr2 bN Þ floating point operations at each time step in the CD and the RK time-steppings. From
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this, we can conclude that the computational demand for computing the solution for the state equation with N

time steps is OðNr2 bN Þ. The number of computational operations needed for solving the adjoint state equation
is obviously of the same order as that needed for solving the state equation. On the whole, the computational
cost for one iteration of the CG algorithm is of order OðNr2 bN Þ. Assuming that the number of time steps N is
fixed, the number of iterations is approximately constant, and the element order r has small integer values, the
computational demand for the overall CG algorithm is OðbN Þ.

6. Numerical experiments

We consider several time-harmonic problems including propagation and scattering of the linear elastic
wave equation in domain X. The domain X is defined such that the boundary surrounding it, Cext, coincides
with the perimeter of the rectangle ½0; 0� � ½4; 4�, where coordinates are given in kilometers. Wave propagation
as discussed in Section 6.3 is simulated in the rectangle ½0; 0� � ½4; 4�, whereas in the experimental results
reported in Sections 6.1 and 6.2, we have set a rigid square obstacle, having side length 2 km and boundary
C0, in the center of the domain. In these experiments, polygonal geometries are used to eliminate the error in
approximating the geometry. The propagation direction is chosen to be ~x ¼ ðx1;x2Þ ¼ ð� 1ffiffi

2
p ; 1ffiffi

2
p Þx, and for

angular frequency we mainly use the value x ¼ 2p Hz. The source function on the absorbing boundary is

Gext ¼ qB oU inc

ot þ rðUincÞn, where the incident plane wave is
Table
Stabili

r

Numbe

CD
RK

Dt=h
CD
RK
Uinc ¼
x1 cosðxt � x

cp
x � ~xÞ þ x2 cosðxt � x

cs
x � ~xÞ

x2 cosðxt � x
cp

x � ~xÞ � x1 cosðxt � x
cs

x � ~xÞ

 !
: ð51Þ
All the computations have been carried out on an AMD Opteron 885 at 2.6 GHz.
6.1. Accuracy and efficiency

Since we are particularly interested in the accuracy of the spatial discretization, we have eliminated the error
due to the absorbing boundary condition by using a modified problem,
q
o2 bU
ot2
�r � rðbUÞ ¼ �q

o2g

ot2
þr � rðgÞ; in Q ¼ X� ½0; T �;bU ¼ 0; on c0 ¼ C0 � ½0; T �;

qB
obU
ot
þ rðbUÞn ¼ Gext; on cext ¼ Cext � ½0; T �;bUðx; 0Þ ¼ Uincðx; 0Þ � gðx; 0Þ; in X;

obUðx; 0Þ
ot

¼ oUincðx; 0Þ
ot

� ogðx; 0Þ
ot

; in X;

gjC0
¼ Uinc; gjCext

¼ 0;
og

on
jCext
¼ 0;
1
ty conditions

1 2 3 4 5

r of time steps

50 60 80 90 100
50 60 80 90 100

0.40 0.17 0.09 0.06 0.04
0.40 0.17 0.09 0.06 0.04
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the solution of which is known to be bU ¼ U inc � g. The accuracy and computational efficiency of the method
is considered with this modified problem in an isotropic homogeneous elastic medium with cp ¼ 2 km=s,
cs ¼ 1 km= s; and q ¼ 2700 kg=m3.
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Fig. 2. Side by side comparisons of the maximum errors obtained in the case of the CD and the RK time-stepping with four different
stopping criteria �.
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6.1.1. Approximation error with constant angular frequency

In the first experiment we have used a constant spatial discretization such that the ratio between the order
of elements r and the mesh stepsize h is r=h � 20 km�1. We have also compared the CD time discretization
with the RK time discretization for element orders r ¼ 1; . . . ; 5. In each case, the number of time steps needed
for stability is tested by using 10i time steps per time-period, for i ¼ 1; 2; 3; . . ., until a stable solution is
achieved. Stability conditions corresponding to the largest stable time step are given in Table 1. According
to our numerical tests, these values are the same with both the CD and the RK time-stepping. Moreover,
Dt satisfies the well known CFL condition
Fig. 4.
time-st

Table
Numb

r

Numbe

CD
RK

For th
discret
Dt
h
¼ ar

cp

ffiffiffi
2
p ; ð52Þ
where ar is a stability constant for element order r [23].
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2
er of time steps needed to attain the error level of spatial discretization for different spectral orders
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r of time steps

50 140 800 1300 3600
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e CD time discretization with spectral order r ¼ 3 or higher, the length of time step that eliminates the error of temporal
ization is determined by extrapolating the curves in Fig. 2(d) to smaller time steps.
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We started computations with the largest stable time step, and then repeatedly added 40 to the number of
time steps N ¼ T=Dt, until N was larger than 500. In this way, we achieved numerical results for a variety of
time step lengths. Errors between the analytical solution and the experimental result are computed as
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L1-norms. Accuracy of the numerical solution is shown in Fig. 2 as a function of the ratio between the time
step Dt and the mesh step size h for both the CD and the RK time-steppings with five element orders r and four
different stopping criteria �.

When the first-order SEM (i.e., r ¼ 1 which corresponds to classical bilinear finite elements) is used, spatial
error dominates for each stable length of the time step with both time discretization schemes. This is seen as
horizontal lines describing the error level of the particular spatial discretization in Fig. 2(a)–(d). Since the low-
est order space discretization gives such a poor accuracy, the controllability method is not useful in practice
unless higher-order elements are used. As the order of the approximation in space increases, the solution
becomes more accurate until the effect of the stopping criterion or the error of time or space discretization
becomes dominant. Fig. 2(a) shows that solutions with small time step and r > 1 are limited by the stopping
criterion. When the stopping criterion is tightened, more accurate solutions are reached with higher-order ele-
ments (see Fig. 2(a)–(d)). In Fig. 2(d), the stopping criterion affects the accuracy only when the RK time dis-
cretization is used with r ¼ 5. This is seen as a trifling oscillation in the left part of the error curve. The residual
stayed slightly over 10�7 for some values of Dt in the algorithm with CD time discretization and r ¼ 1. This is
why there are some blank spaces in the corresponding curve in Fig. 2(d).

When the stopping criterion � is tightened, the number of CG iterations needed to attain the stopping cri-
terion grows. This implies a larger computational effort, as seen in Fig. 3(a)–(b). On each curve, presenting the
computational cost with respect to Dt=h, the number of degrees of freedom and r are constants. The linear
dependence between CPU time and Dt=h shows that the order of the number of iterations remains constant
when time step refinement is done. Although the RK time discretization consumes more CPU time than
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Fig. 7. Side by side comparisons of the maximum errors with respect to CPU time in the case of the CD and the RK time-stepping with
four different stopping criteria �.
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the CD time discretization for a particular time step, the method with the RK time discretization is the more
efficient one with higher-order elements (see Fig. 4). The secret behind this behaviour, which is not in line with
the proportion of arithmetic operations needed at each CG iteration, lies in the number of CG iterations. Since
the algorithm with the RK time discretization solves the problem at each iteration more accurately than the
algorithm with the CD time discretization, the RK version needs a smaller number of iterations. This phenom-
enon is emphasized when the stopping criterion is tightened. In the case of the RK time discretization with
r ¼ 4 and � 6 10�5 the error of the stopping criterion has little or no influence on the solution. Moreover,
the error of time discretization has no effect at this point, which makes possible to use the largest stable time
step accurately. These properties induce the remarkable efficiency for r ¼ 4 with the RK time discretization
and the largest stable time step, as seen in Fig. 4(b)–(d).

A large time step allows us to compute the solution utilizing only small amount of CPU time, but it may
involve an error which deteriorates the accuracy of the method. As a result, we tested which magnitude of the
time step leads to prescribed accuracy with a relatively low number of time steps, i.e., with a comparatively low
computational cost. The comparison between the two time discretization schemes shows that with higher-
order elements, the RK time discretization gives a more accurate solution with a larger time step than the
CD time discretization. The fourth-order accurate RK time discretization does not limit the accuracy of
the solution at all with any stable time step and any r < 5. With the second-order CD time discretization,
the error level of the space discretization is achieved with r > 1 only by choosing an appropriately small time
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domain, where cp ¼ 2 km=s, cs ¼ 1 km=s; and q ¼ 2700 kg=m3.
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step. Since we are interested in particular in the accuracy of spatial discretization, the smallest number of time
steps which eliminate the error of temporal discretization are determined from Fig. 2(d) and shown in Table 2.
These are also the values which we will use for the later tests in this article. The proportion of CPU time
required for different parts of the CG algorithm, with number of time steps shown in Table 2, is seen in
Fig. 5. It is noteworthy that with the CD time discretization the number of time steps needed to attain the
given accuracy is at least ten times that of the RK time discretization for r P 3. This confirms the better effi-
ciency of the RK time discretization with higher-order elements.

6.1.2. Numerical dispersion with increasing angular frequency

Even though we have eliminated the main error sources in Section 6.1.1, numerical dispersion deteriorates
the accuracy of solutions with small waves. The computed wavenumber differs from the wavenumber of the
exact solution, and with high angular frequencies this part of approximation error becomes dominant. This is
also referred to as the pollution effect. To show that using higher-order elements alleviates this inaccuracy, we
performed another set of experiments, varying both the angular frequency and the resolution of the mesh so
that xh ¼ rp=10 km=s. Since the efficiency of the method is not significantly better with � ¼ 10�7 than with
� ¼ 10�6, and the method with the CD time discretization had problems converging to the stopping criterion
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Fig. 9. Wave propagation in the case of the RK time-stepping with x ¼ 2p Hz and � ¼ 10�6 in homogeneous domain, where
cp ¼ 2 km=s, cs ¼ 1 km=s; and q ¼ 2700 kg=m3 in X ¼ ½0; 4� � ½0; 4�.
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� ¼ 10�7 with certain lengths of the time step, we hereafter concentrate on the case with � ¼ 10�6. In this case,
the stopping criterion does not significantly limit the accuracy of the numerical solutions computed with the
CG algorithm.

The accuracy of the solution with respect to the angular frequency is presented in Fig. 6. As the wavenum-
ber grows, the error increases for all orders of the elements. In the case of the classical finite element discret-
ization, i.e., r ¼ 1, the error becomes very large as the wavenumber increases. This happens even if xh is kept
constant. With higher-order elements, the pollution effect is not eliminated, but the accuracy is significantly
better, even for high angular frequencies. As seen in Fig. 6, when the error of time discretization is eliminated,
the same level of accuracy is attained with the CD and the RK time discretizations. This is also true for high
wavenumbers. With the RK time discretization, this level of accuracy is achieved with lower computational
cost than with the CD time discretization (see Fig. 7). From Figs. 6 and 7, we further notice that CPU time
for the algorithm grows with the wavenumber. The reason for this is the increase in number of CG iterations.

6.2. Elastic scattering by a rigid obstacle

We now discuss elastic scattering by a rigid square obstacle of side length 2 km in an isotropic homoge-
neous elastic medium. The material parameters are the same as in the previous test case, and the absorbing
 220

 240

 260

 280

 300

 320

 340

 0.6  0.8  1  1.2  1.4  1.6  1.8

N
um

be
r 

of
 it

er
at

io
ns

Relaxation parameter for AMG

RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.6  0.8  1  1.2  1.4  1.6  1.8

C
P

U
 ti

m
e

Relaxation parameter for AMG

RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

 5

 10

 15

 20

 25

 30

 35

 0.6  0.8  1  1.2  1.4  1.6  1.8

N
um

be
r 

of
 A

M
G

 c
yc

le
s

Relaxation parameter for AMG

RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.6  0.8  1  1.2  1.4  1.6  1.8

C
on

ve
rg

en
ce

 fa
ct

or
 o

f A
M

G

Relaxation parameter for AMG

RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

Fig. 10. Wave propagation in the case of the RK time-stepping with x ¼ 2p Hz and � ¼ 10�6 in heterogeneous domain, where
cp ¼ 600 m=s, cs ¼ 400 m=s; and q ¼ 7200 kg=m3 in ½1; 3� � ½1; 3� and cp ¼ 2 km=s, cs ¼ 1 km=s; and q ¼ 2700 kg=m3 in
X n ð½1; 3� � ½1; 3�Þ.
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7. Conclusions

To make good use of higher-order elements, the time discretization should also be done with a higher-order
scheme. As a rule of thumb, we can say that the efficiency of the overall method suffers from the time discret-
ization error if the order of the element is greater than the order of the time discretization method. The second-
order CD time discretization method is efficient with r ¼ 1, and the insufficiency of computational capacity
might be a good reason to use it for r ¼ 2 as well. When high accuracy is needed, it is best to use the RK time
discretization method and small �. The largest stable time step can be used when r 6 4, but for elements of
order r P 5, smaller time steps are recommended to guarantee high accuracy. According to our computations,
the most efficient solution strategy with this controllability algorithm is a combination of the RK time discret-
ization, the largest stable time step and the stopping criterion of � ¼ 10�6 with r ¼ 4.
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