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Abstract

The time-harmonic solution of the linear elastic wave equation is needed for a variety of applications. The typical pro-
cedure for solving the time-harmonic elastic wave equation leads to difficulties solving large-scale indefinite linear systems.
To avoid these difficulties, we consider the original time dependent equation with a method based on an exact controlla-
bility formulation. The main idea of this approach is to find initial conditions such that after one time-period, the solution
and its time derivative coincide with the initial conditions.

The wave equation is discretized in the space domain with spectral elements. The degrees of freedom associated with the
basis functions are situated at the Gauss—Lobatto quadrature points of the elements, and the Gauss—Lobatto quadrature
rule is used so that the mass matrix becomes diagonal. This method is combined with the second-order central finite dif-
ference or the fourth-order Runge-Kutta time discretization. As a consequence of these choices, only matrix—vector prod-
ucts are needed in time dependent simulation. This makes the controllability method computationally efficient.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The linear theory of elasticity [1] models mechanical properties of solids assuming small deformations. This
theory describes several phenomena, including seismic waves in the earth and the passing of ultrasonic waves
through materials in order to detect flaws. Efficient solution methods, such as domain decomposition [2-5],
fictitious domain [6], and multigrid [7,8], have been developed for solving the elasticity problem. These meth-
ods are typically used when the solution is based directly on the complex-valued time-harmonic equations and
low-order finite elements (see e.g. [9-11]).
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To obtain accurate results, the discretization mesh needs to be adjusted to the wavelength. This leads to a
large-scale indefinite linear system for which it is difficult to develop efficient iterative solution methods. Fur-
thermore, the error increases as the wavenumber increases, which makes finding an accurate solution even
more challenging. Thus, several modifications of the classical finite element method (FEM) have been used
to maintain the accuracy of the solution. For instance, these are methods such as ultra weak variational for-
mulation (UWVF) [12,13], Galerkin generalized least-squares [14], discontinuous enrichment [15], discontin-
uous Galerkin [16,17], and spectral collocation [18].

Our objective is to solve the problem in a manner that does not require solution of an indefinite linear sys-
tem. For this purpose we use a controllability algorithm [19-22]. The main idea of the algorithm is to return to
the time dependent wave equation and find initial conditions such that after one time-period the solution and
its time derivative coincide with the initial conditions. This is why the controllability problem is reformulated
as a least-squares optimization problem. This problem is solved with a preconditioned conjugate gradient
algorithm.

We use the spectral element method (SEM) [23,24] for spatial discretization. It provides for a convenient
treatment of complex geometries and varying material properties. The basis functions are higher-order
Lagrange interpolation polynomials, and the nodes of these functions are placed at the Gauss—Lobatto collo-
cation points. The integrals in the weak form of the equation are evaluated with the corresponding Gauss—
Lobatto quadrature formulas. As a consequence of this choice, spectral element discretization leads to diag-
onal mass matrices significantly improving the computational efficiency of the explicit time-integration used.
Moreover, when using higher-order elements, same accuracy is reached with fewer degrees of freedom than
when using lower-order finite elements.

The paper is organized as follows. The statement of the problem and some preliminaries are presented in
Section 2. We give the exact controllability formulation in Section 3 and discretization schemes in Section 4.
We discretize the elastic wave equation in space domain with spectral elements in Section 4.1. Time discreti-
zation is accomplished using central finite differences in Section 4.2.1 and the fourth-order Runge-Kutta
scheme in Section 4.2.2. In Section 5, we present the control problem and a preconditioned conjugate gradient
algorithm that is related to the one developed in [25] for the linear acoustic wave equation. In Sections 5.1 and
5.2, we compute the gradient of the functional, an essential point of the method, using the adjoint state tech-
nique. The algebraic multigrid method [26,27] is used for preconditioning the conjugate gradient algorithm in
Section 5.3. Numerical experiments concerning the propagation of time-harmonic waves show the efficiency of
the algorithm in Section 6.

2. The time-harmonic elastic wave equation

In an elastic, homogeneous, and isotropic body Q C R* with density p, the propagation of time-harmonic
waves with angular frequency w is governed by the Navier equation

—o’pu—V-cu)=0 in Q, (1)

where u denotes the displacement field u(x) = (u;(x),u2(x))", which depends on the spatial variable
X = (xl,xZ)T € R%. The strains are related to the displacements by the linearized strain tensor e, which is
defined by

1
€(u) = E(Vu +(Va)"). (2)
The stress tensor o(u) is then expressed as
o(u) = p(c — 22)(V - Wi + 2pcie(u). 3)
Coeflicients ¢, and ¢, represent the speed of the pressure waves (P-waves) and the speed of the shear waves
(S-waves), respectively. The P-waves have a compressional motion, while the motion of the S-waves is perpen-
dicular to the direction of wave propagation [28].

The boundary 0Q surrounding the domain Q is divided into two distinct parts (see Fig. 1). The boundary I'y
is assumed to be rigid,
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Fig. 1. Domain Q, and the two parts of the boundary 0Q = I'y U ', of the domain Q.
u=0 on I, (4)
whereas on the artificial boundary Iy, we impose the absorbing boundary condition
iwpBu+ o(u)n = g,,. (5)
Here B is a symmetric positive definite 2 x 2-matrix [29,30] given by
B— (cpn% + csn3 (ep — cs)nlnz)
(cp —co)mny ci® +cpnd )’

where n = (nl,nz)T is the outward pointing normal vector on [e.
3. The exact controllability problem

Solving the time-harmonic equation given by (1), (4) and (5) is equivalent to finding a time-periodic solution
for the corresponding time dependent wave equation

o’U .
PW_V-G(U)ZQ in 0=0x(0,7), 7
U=0, ony,=1I,x(0,T), ®)
pB%—I[j+ o’(U)ﬂ = Gexta on Yexy = FCXI X (07 T)’ (9)

where U = (U,,U 2)T and  Gey = (Gexts Gexlz)T. In addition to the system (7)—(9), we take into account the
initial conditions
oU(x,0)

U(X7O)ZEO, T:el. (10)

The time-period corresponding to the angular frequency  is given by ' = 2, and the T-periodic solution
can be achieved by controlling the initial conditions such that the terminal conditions are equal to the initial
conditions (10) at the end of the computation.

For the weak formulation of the problem (7)—(10), we introduce the function space

W = {y € H'(Q) x H'(Q) such that y =0 on I'y}. (11)

By multiplying Eq. (7) with any test function v in the space W, using Green’s formula, and substituting
the boundary conditions, we get the following weak formulation: Find U satisfying U(¢) € W for any
t€[0,7] and

2
/paa—tlzj-vdx—k/o(U):e(v)dx—i-/ pBaa—ltJ-vds:/ Gex - vds (12)
Q Q Fext Fext

for any ve W and ¢ € [0, 7.
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Introducing the Hilbert space Z for the initial conditions e = (ey, el)T € Z by
Z =W x [*(Q), (13)

we formulate the exact controllability problem as follows: find initial conditions e = (e, el)T such that the
weak formulation (12) holds with the terminal conditions

ou(x,T)

U(x,T) = ey, o

= €. (14)

4. Discretization

Discretization methods play a large role in the efficiency of the controllability method. The key factor in
developing efficient solution methods is the use of high-order approximations without computationally
demanding matrix inversions. We attempt to meet these requirements by using the spectral element [23]
method for space discretization.

As, for instance, in [31], we locate the degrees of freedom corresponding to the basis functions at the Gauss—
Lobatto integration points of the elements. With the Gauss-Lobatto integration rule, this makes the mass
matrices diagonal without reducing the order of accuracy. Thus, the inversion of the mass matrix is a trivial
and computationally efficient operation.

Since we have returned to the time dependent wave equation, also time discretization is needed. For time
discretization we compare the central finite difference (CD) scheme with the fourth-order accurate Runge-
Kutta (RK) method. With respect to the time step Af, the CD method is second-order accurate, while the
RK method is fourth-order accurate. Both methods lead to an explicit time-stepping scheme, and only
matrix—vector products are needed in time dependent simulation. These properties are essential for computa-
tional efficiency. The drawback is that the schemes need to satisfy the stability condition, which limits the
length of the time step. In addition, the computational effort of the RK method is approximately four times
that of the central finite difference scheme at each time step.

4.1. Spatial discretization

The physical domain Q is divided into N, quadrilateral elements @;, i =1,...,N,, such that Q = U?ﬁle.
For the discrete formulation, we define the reference element Q. = [0, 1]2 and affine mappings
G Qur — Q; such that G;(Q.r) = Q;. We define the finite dimensional space

W, ={y = (»,»,) € W such that )’k|g,- 0G0, k=12}, (15)

where (' is the set of polynomials of order r in each variable in space. The order » = 1 corresponds to bilinear
finite elements.

Denoting by U(¢) the global vector containing the nodal values of the displacement U(x, ¢) at time 7, we
write the semi-discrete equation in the form

o*U(r)  _ouU(r) B

M

where M, S, and K are 2 x 2 block matrices and F is a block vector as follows:

Mll 0 > (Sll 812> (IC“ IC12> <fl>
M = . S= , K= . F= .
( 0 MZZ 821 822 ICZ] ’C22 fZ
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The components of these block forms are

(Mll)ij:/pq)j(pidxv

Q

(MZZ)ij:/p(pj(pidxa
Q

(Sll)ij = /I‘ p(cpnf + CS”%)@;‘QD;‘ ds,

(Si2),; = [ plep —cs)mmep;@,ds,

] J
Fexl

(Sa)y = [ plen— comnsg s,
rext

(822)fj = / p(cpng + csn%)(Pj(Pi ds,
Text

pleg —2¢7)

9¢; a(ﬂi+2 2 % Op, 109, 3¢, dx,
6x1 6x1 2 6x2 a)Q

e C
axl le $

3p; Do, 0p; Do,
2 2 2\~ "J i 27 i
,D(Cp CS) 6x2 axl + s axl 6x2> dx,

0¢; o, 09, o,
<p(c§—2c§) % 6(p’+ P a<p,> dx,

—
&
o
:_/
~.
I

a_xl 6)(2 SG_XZ 6)(?1

f
Q:II .
— T T

(’CZZ)U = p(clzn —2¢3) Z(szl 2;/)21 +2pc: <% 2_)(?1/ 2;/); 2_1)21 2;:)21)) dx,
Fi= [ Guaoids
Text
(Fa); = i Gex¢p; ds,
where i,j =1,.. : N. By N we denote the total number of Gauss—Lobatto points in the space discretization,

which is the number of degrees of freedom (DOF) in each space variable.

4.2. Time discretization

The time discretization of the semi-discrete equation is performed with the central finite differences (CD) in
Section 4.2.1 and with the fourth-order Runge-Kutta (RK) method in Section 4.2.2. Since the mass matrix M
is diagonal, explicit time-stepping with central finite differences or the Runge-Kutta scheme requires only
matrix—vector multiplications. After dividing the time interval [0,7] into N time steps, each of size
At = T/N, applying the appropriate time discretization into the semidiscretized form (16), and taking into
account the initial conditions (10), we obtain matrix form of the fully discrete state equation.

4.2.1. Central finite difference method

The spectral element approximation in space is combined with the standard second-order central finite dif-
ference scheme in time by replacing the time derivatives in the semidiscretized form (16) at time iA¢ by the
following approximations

’U(iA) UM —2U U UGAn) Ut U
o2 T AP ’ oa  2Ar
where U’ is the vector U at time iA¢. Taking into account the initial conditions (10), we obtain the fully discrete
state equation, which can be represented in the matrix form

i=0,...,N, (17)
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7 U’ 7z 0 0
C, M U 0 AtB 1F
B ¢ D 0 0 e F!
e, 3(e) = (2)-ae
. . €
B C D uy : : :
B C D UN+1 0 0 fN
where § = (U°, U, ..., UY, U""!)" contains the vectors U', the initial condition is e = (e, e;)",
the vector F at time ¢ = iAt. The matrix blocks Cy, B, C and D are given by the formulas
AP
Co=—K-M,
2
At
D=M+ 78 ,
C=APK—2M,
At
B=M-— 78 ,

and F'is

while 7 is the identity matrix. The form (18) is further used to derive the adjoint state equation in Section 5.

4.2.2. Fourth-order Runge—Kutta method

The state equation (16) can be presented as a system of differential equations

)

where y = (U, V)T is a vector of time-stepping variables U and V

(f1(t,U, V), f2(£,U, V))" has components
N U V)=V,
£t U V) = -M(SV + KU - F).

_u
ot

(23)

and the function f(¢,y(¢)) =

In the fourth-order Runge-Kutta method, the solution y at the ith time step can be presented as

, ; 1
yl = yl_l +6(k1 + 2k2 + 2k3 +k4),

where y' = (U, 2)" contains the displacement vector U’ and its derivative V'

ot

i=1,...,N. The initial condition is given by y’ =e = (eo,el)T,

the gradient estimates as follows:
ki Atfi(iAt, U, V')
(ku) - (Atfz(iAt, Ui,Vi)>’
<m> (NMW+%U+%Nw%v
k2 Atf> (iAt + 4, U + 40 V74 ) '
(
(
(

k31 Atfi(iAe + 41U 4121 Vi k)
<k32> - (Atfz iAt+%7U"+’%V"+Im)>
kg B

(1)

2

Atfi (it + At, U + b3y, V4 k)
Atfs (il + At U + k3y, Vi + k) )

_ v

(26)

- at time ¢ = iAt,
and k; = (kp.kp)', j=1,2,3,4, are

(27)

(28)

(29)

(30)

In other words, in order to get the gradient estimates (27)—(30), the function fis evaluated at each time step
four times by using the formulas (24) and (25) and then the successive approximation of y is calculated by the
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formula (26). To make the application of the adjoint equation technique in Section 5 more convenient, we
present the fully discrete state equation in the case of the Runge—Kutta time discretization as

T y’ 7 0
N T y! 0 Fl
s*(e,¥(e)) = =] O e =0, (31)
N T yN’1 .%Nfl
N )\ ¢ 0 FN
where § = (y°,y',...,¥""1,y")" includes the vectors y' = (U, %), e = (e),e;)" contains the initial values,
and the matrix N and the vector F' are defined by
~ T -1 ~
C T 2B
N=-|% - 2B 1, (32)
2C B I 2B
C 2B 7 2B
C T T -1 Pt
. ¢ B 1 Dib
Fi__|2€ ~ 73 | (33)
2C B I Di—:
C 2B I D

The matrix blocks C and B and the vector blocks D' are given by the formulas

N (- T 0 )
C= s
_EI
AMIE AMTIS

—1 i
A (At/\/g F )

The block-matrix form (31) of the fully discrete state equation with the RK time-stepping is analogous to the
state Eq. (18).

S o=~

5. Control problem

In order to solve the exact controllability problem, we use the least-squares formulation

minJ (e, §(e)), (34)
where y(e) solves Egs. (7)-(10) and
oLy (K0,
ses) =30 o () )@= 39

is the discretized objective function. Solving the minimization problem (34) is equivalent to finding initial con-
ditions such that the gradient of the objective function (35) is zero. This can be done by a conjugate gradient
algorithm. In order to implement the algorithm, we have to compute the derivative of the objective function
(35).

The state equations (18) and (31) can be represented in the generic form s(e, y(e)) = 0, and by the adjoint
equation technique we see that
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(e, 3(e) _a/(e) i05(e3)

k=0,1 36
dek aek aek ’ > ( )

where z contains the vectors of the adjoint state variable at time iA¢. The vector Z is the solution of the adjoint
equation

~ T ~ T
ay ay
By so(e,¥(e)) = 0 we denote the state equation ((18) or (31)) in the special case with F* = 0 for all i.

5.1. The adjoint equation with the central finite difference method

In the matrix form corresponding to (18), the adjoint state equation is given by

Z C B P’ 0
M C B P! :
D . . 0
= o | (38)
. B : ouNT
D c|| p W
D PN+1 —x[_?—NJ’H
where
oJ 1 ou”
U T 2Ar ( - 7)’ (39)
oJ 1 ou”
= — 4
UV 2A¢ ( o e‘)’ (40)
oJ
quy ~ KU e (1)
The gradient components are then the following:
d‘](e7 Y(e>) _ }C(eo _ UN) + PO7 (42)
deo
dJ(e y(e)) _ ou” i
de, =M]le o + AtBP". (43)
5.2. The adjoint equation with the fourth-order Runge—Kutta method
The adjoint equation corresponding to the state Eq. (31) is
7z NT zZ 0
7z N z! 0
7z N2
T N at

where 7' = (Pi,%‘f)T contains the solution of the adjoint equation and its time derivative at ¢ = iA¢,

i=N-—1,...,0, and in addition we have
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oJ ’C(UN —e())

o (e

In the case of the fourth-order Runge-Kutta scheme, the gradient components are

VI _ ke~ ) P, #3)
dJ(e,3(e)) ou™y | op’
T:MGI_F)—FF' (46)

5.3. Preconditioned conjugate gradient method

We solve the least-squares problem with the following conjugate gradient (CG) algorithm:
Algorithm 1. Preconditioned CG algorithm

Compute the initial value ¢ = (eJ,e))".

Solve the state equation s(e°, y(e°)) = 0.

Solve the adjoint state equation (as(gg‘(igjt))) V= (gg({é;o)) )"

Compute the gradient g = (g, g,)T by the formulas (42) and (43) or (45) and (46).
Solve linear system with the preconditioner Lw = —g.
Set ¢ = —(w,g),c=¢o and i=1.

Repeat until \/Z <e¢

Solve the state equation so(w,y(w)) = 0.

Solve the adjoint state equation ( s(w (y (;V” Viz= (%)T.

Compute the gradlent update v = (vo, vl) by the formulas (42) and (43) or (45) and (46).
Compute n=
e =e ' 4 nw
g=g+nv.
Solve linear system with the preconditioner Lv = —g.
V*‘C* —(v,8), 7= ¢y,

=v+4+yw, i=i+1.

Smooth initial approximations ¢’ = (e}, e})" for the algorithm are computed with a transition procedure,
which is presented in [32]. Values of the control variables e at the ith iteration are denoted by e) and e}.
Each conjugate gradient iteration step requires computation of the gradient of the least-squares functional,
VJ, which involves the solution of the state equation (18) or (31) and the corresponding adjoint equation (38)
or (44), the solution of a linear system with the preconditioner, and some other matrix—vector operations.
The solution of a linear system with the block-diagonal preconditioner, which we have chosen to be

(5 5)

requires the solution of systems with the stiffness matrix & and the diagonal mass matrix M. Efficient solution
of linear systems with the matrix /C is critical for the overall efficiency of the control method. At this stage, we
use a modification of Kickinger’s [33] algebraic multigrid (AMG) introduced in [26]. As the name of the meth-
od indicates, a number of different grid levels are used on the domain, ranging between fine and coarse levels.
A sequence of linear problems

Kiw, = g (48)
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is generated, corresponding to grid levels / =0,..., k, where k represents the coarsest level. Each AMG
iteration starts with the finest level matrix Xy, right hand side vector g,, and an approximation w,. For a
particular level /, the residual is given by 7, = g, — KC;w,. This is used as the basis of a correction equation
w; = w; + ¢;. The error ¢, is related to the residual by K ;e; = 7. Unlike the classical geometric multigrid meth-
ods [7,8], in the AMG the actual coarsening of the given mesh is not needed for finding coarser grid levels.

The coarsening, i.e., selection of the unknowns for coarser levels, is based on the graph of the stiffness
matrix, rather than on the actual values stored in the stiffness matrix. This approach ensures fast computation
of coarser level components. The coarsening process operates in a geometric fashion by sequentially choosing
a coarse node and eliminating the neighboring nodes of the graph. In selecting the unknowns for coarser lev-
els, the primary criterion is to take the node with minimum degree when eliminations have taken into account.
The secondary criterion is to follow the original node numbering.

The use of the AMG methods for spectral elements has recently been studied in [34]. The number of con-
nections between unknowns of the problem increases when higher-order elements are used. In this case, the
coarsening strategy described above leads to unacceptably coarse systems and the convergence factor of the
AMG degrades rapidly as the order of the approximation polynomials increases. We overcome this problem
by employing a graph constructed so that unknowns are connected to each other as if low-order finite elements
were used in the discretization process. Only the unknowns corresponding to the nearest neighboring Gauss—
Lobatto points are connected to each other. Additionally, in vector valued problems it is necessary to prevent
mixture of various types of unknowns also on coarser levels. This is achieved by giving the method an initial
graph where the sets of graph nodes corresponding to different types of unknowns are not interconnected.

The grid transfer operators are the restriction operator R and the prolongation operator P. The matrices
IC;, which are used at multigrid levels / =0, .. 'JNC’ are set as an initialization step of the AMG algorithm. For
this purpose we need the restriction operator R/™" from the fine level / to the coarse level (/ + 1)

_ Rl+1 0
1+1 !
oo (%) -

where the components of the restriction matrices R/ are

for a fine grid point j which is a coarse grid point i,
for a fine grid point j which is a neighbor of coarse grid

R, = o S o (50)
7 point i and has & neighboring coarse grid points,

=

0 otherwise.

When the fine level matrix X; is known, the coarse grid operator is given by the Galerkin formula
Kio1 = RIFC,(RFDT. The prolongation operator P/, from the coarse level (/ + 1) to the fine level /is chosen
to be the transpose of the restriction.
Pl = (R

As a smoother of the AMG we have used successive over-relaxation (SOR), with over-relaxation parameter
1.2, unless other mentioned. One iteration of the SOR is used for pre- and post-smoothing. Additionally,
in the beginning of every multigrid iteration, four iterations of the SOR are used to smooth the solution ini-
tially. The so called W-cycle [7,35] is utilized as a multigrid iteration until the residual norm of the solution is
smaller than 10°°.

When solving the state equation (18) or (31), M is the only matrix inversion which is involved in time-
stepping. Since the matrix M is diagonal, it is inverted simply by inverting each of its diagonal elements. This
requires only 2N floating point operations, which is the number of degrees of freedom in the space discreti-
zation. The operation count of a matrix-vector product with any one of the matrices M, M!S, or S (or
some linear combination of these) is of order O(N). In the matrix-vector multiplication involving the sparse
stiffness matrix /C, only non-zero matrix entries are multiplied, which requires on the order of ¥>N operations.
Besides these, some additions and multiplications are needed at each time step. Thus, solving the state equa-
tion needs O(rzﬁ ) floating point operations at each time step in the CD and the RK time-steppings. From



S. Monkold et al. | Journal of Computational Physics 227 (2008) 5513-5534 5523

this, we can conclude that the computational demand for computing the solution for the state equation with N
time steps is O(NrZZT/ ). The number of computational operations needed for solving the adjoint state equation
is obviously of the same order as that needed for solving the state equation. On the whole, the computational
cost for one iteration of the CG algorithm is of order O(Nr*N). Assuming that the number of time steps N is
fixed, the number of iterations is approximately constant, and the element order r has small integer values, the
computational demand for the overall CG algorithm is O(N).

6. Numerical experiments

We consider several time-harmonic problems including propagation and scattering of the linear elastic
wave equation in domain Q. The domain € is defined such that the boundary surrounding it, Iy, coincides
with the perimeter of the rectangle [0,0] x [4, 4], where coordinates are given in kilometers. Wave propagation
as discussed in Section 6.3 is simulated in the rectangle [0,0] x [4,4], whereas in the experimental results
reported in Sections 6.1 and 6.2, we have set a rigid square obstacle, having side length 2 km and boundary
Iy, in the center of the domain. In these experiments, polygonal geometries are used to eliminate the error in
approximating the geometry. The propagation direction is chosen to be & = (w;, ;) = (— %W%)w, and for
angular frequency we mainly use the value w = 2n Hz. The source function on the absorbing boundary is
G = pB% + 0 (Uine)n, where the incident plane wave is

w; cos(wt — ﬁx - @) + wy cos(wt — 2X- ®)
Uinc = o) = 0] = . (5 1)
, cos(wt — ox @) — wy cos(wt — X - @)
All the computations have been carried out on an AMD Opteron 885 at 2.6 GHz.

6.1. Accuracy and efficiency

Since we are particularly interested in the accuracy of the spatial discretization, we have eliminated the error
due to the absorbing boundary condition by using a modified problem,

o°U o’g

pﬁ_v.o’(U):—pW—f—V'O’(g)’ in 0=Qx[0,T],
U=0, onvy,=1TI,x][0,T],

ou -
pBg‘i’U(U)n = Gexl; on Yeyy = Fext X [07 TL

~

U(x,0) = U (x,0) — g(x,0), in Q,
0U(x,0)  0Uine(x,0) 3g(x,0)

in Q
ot ot o ’
0g
g|r0 = Ulne, g|rm =0, a'l"m =Y

Table 1
Stability conditions
r 1 2 3 4 5
Number of time steps
CD 50 60 80 90 100
RK 50 60 80 90 100
At/h
CD 0.40 0.17 0.09 0.06 0.04

RK 0.40 0.17 0.09 0.06 0.04
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the solution of which is known to be U = U jc — g. The accuracy and computational efficiency of the method
is considered with this modified problem in an isotropic homogeneous elastic medium with ¢, =2 km/s,

¢s=1km/s, and p=2700kg/m?’.
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Fig. 2. Side by side comparisons of the maximum errors obtained in the case of the CD and the RK time-stepping with four different
stopping criteria e.
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stepping with two different stopping criteria e.
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6.1.1. Approximation error with constant angular frequency

In the first experiment we have used a constant spatial discretization such that the ratio between the order
of elements r and the mesh stepsize 4 is /h ~ 20 km~'. We have also compared the CD time discretization
with the RK time discretization for element orders » = 1,...,5. In each case, the number of time steps needed
for stability is tested by using 10i time steps per time-period, for i = 1,2,3,..., until a stable solution is
achieved. Stability conditions corresponding to the largest stable time step are given in Table 1. According
to our numerical tests, these values are the same with both the CD and the RK time-stepping. Moreover,
At satisfies the well known CFL condition

A
B2

where o, is a stability constant for element order r [23].
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Fig. 4. Side by side comparisons of the maximum errors with respect to CPU time (in seconds) obtained in the case of the CD and the RK
time-stepping with four different stopping criteria e.

Table 2

Number of time steps needed to attain the error level of spatial discretization for different spectral orders

r 1 2 3 4 5
Number of time steps

CD 50 140 800 1300 3600
RK 50 60 80 90 210

For the CD time discretization with spectral order » =3 or higher, the length of time step that eliminates the error of temporal
discretization is determined by extrapolating the curves in Fig. 2(d) to smaller time steps.
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We started computations with the largest stable time step, and then repeatedly added 40 to the number of
time steps N = T'/At, until N was larger than 500. In this way, we achieved numerical results for a variety of
time step lengths. Errors between the analytical solution and the experimental result are computed as
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Fig. 5. Side by side comparisons of the proportions of CPU time (in percent) required by AMG cycles in the case of the CD and the RK

time-steppings with e = 107",
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L>-norms. Accuracy of the numerical solution is shown in Fig. 2 as a function of the ratio between the time
step At and the mesh step size / for both the CD and the RK time-steppings with five element orders r and four
different stopping criteria e.

When the first-order SEM (i.e., » = 1 which corresponds to classical bilinear finite elements) is used, spatial
error dominates for each stable length of the time step with both time discretization schemes. This is seen as
horizontal lines describing the error level of the particular spatial discretization in Fig. 2(a)—(d). Since the low-
est order space discretization gives such a poor accuracy, the controllability method is not useful in practice
unless higher-order elements are used. As the order of the approximation in space increases, the solution
becomes more accurate until the effect of the stopping criterion or the error of time or space discretization
becomes dominant. Fig. 2(a) shows that solutions with small time step and » > 1 are limited by the stopping
criterion. When the stopping criterion is tightened, more accurate solutions are reached with higher-order ele-
ments (see Fig. 2(a)—(d)). In Fig. 2(d), the stopping criterion affects the accuracy only when the RK time dis-
cretization is used with » = 5. This is seen as a trifling oscillation in the left part of the error curve. The residual
stayed slightly over 10~ for some values of Af in the algorithm with CD time discretization and » = 1. This is
why there are some blank spaces in the corresponding curve in Fig. 2(d).

When the stopping criterion ¢ is tightened, the number of CG iterations needed to attain the stopping cri-
terion grows. This implies a larger computational effort, as seen in Fig. 3(a)—(b). On each curve, presenting the
computational cost with respect to A¢/h, the number of degrees of freedom and r are constants. The linear
dependence between CPU time and Az/h shows that the order of the number of iterations remains constant
when time step refinement is done. Although the RK time discretization consumes more CPU time than
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the CD time discretization for a particular time step, the method with the RK time discretization is the more
efficient one with higher-order elements (see Fig. 4). The secret behind this behaviour, which is not in line with
the proportion of arithmetic operations needed at each CG iteration, lies in the number of CG iterations. Since
the algorithm with the RK time discretization solves the problem at each iteration more accurately than the
algorithm with the CD time discretization, the RK version needs a smaller number of iterations. This phenom-
enon is emphasized when the stopping criterion is tightened. In the case of the RK time discretization with
r=4 and e < 107 the error of the stopping criterion has little or no influence on the solution. Moreover,
the error of time discretization has no effect at this point, which makes possible to use the largest stable time
step accurately. These properties induce the remarkable efficiency for » = 4 with the RK time discretization
and the largest stable time step, as seen in Fig. 4(b)—(d).

A large time step allows us to compute the solution utilizing only small amount of CPU time, but it may
involve an error which deteriorates the accuracy of the method. As a result, we tested which magnitude of the
time step leads to prescribed accuracy with a relatively low number of time steps, i.e., with a comparatively low
computational cost. The comparison between the two time discretization schemes shows that with higher-
order elements, the RK time discretization gives a more accurate solution with a larger time step than the
CD time discretization. The fourth-order accurate RK time discretization does not limit the accuracy of
the solution at all with any stable time step and any » < 5. With the second-order CD time discretization,
the error level of the space discretization is achieved with » > 1 only by choosing an appropriately small time
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Fig. 8. Elastic scattering by a square obstacle in the case of the RK time-stepping with @ = 2n Hz and ¢=10"° in homogeneous
domain, where ¢, =2km/s, ¢, = 1 km/s, and p = 2700 kg/m>.
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step. Since we are interested in particular in the accuracy of spatial discretization, the smallest number of time
steps which eliminate the error of temporal discretization are determined from Fig. 2(d) and shown in Table 2.
These are also the values which we will use for the later tests in this article. The proportion of CPU time
required for different parts of the CG algorithm, with number of time steps shown in Table 2, is seen in
Fig. 5. It is noteworthy that with the CD time discretization the number of time steps needed to attain the
given accuracy is at least ten times that of the RK time discretization for » > 3. This confirms the better effi-
ciency of the RK time discretization with higher-order elements.

6.1.2. Numerical dispersion with increasing angular frequency

Even though we have eliminated the main error sources in Section 6.1.1, numerical dispersion deteriorates
the accuracy of solutions with small waves. The computed wavenumber differs from the wavenumber of the
exact solution, and with high angular frequencies this part of approximation error becomes dominant. This is
also referred to as the pollution effect. To show that using higher-order elements alleviates this inaccuracy, we
performed another set of experiments, varying both the angular frequency and the resolution of the mesh so
that wh = rn/10 km/s. Since the efficiency of the method is not significantly better with ¢ = 10~ than with
e = 107, and the method with the CD time discretization had problems converging to the stopping criterion
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Fig. 9. Wave propagation in the case of the RK time-stepping with @ =2nHz and ¢=10"° in homogeneous domain, where
¢y =2km/s, ¢, =1km/s, and p=2700kg/m’ in Q=1[0,4] x [0,4].
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e = 1077 with certain lengths of the time step, we hereafter concentrate on the case with e = 107°. In this case,
the stopping criterion does not significantly limit the accuracy of the numerical solutions computed with the
CG algorithm.

The accuracy of the solution with respect to the angular frequency is presented in Fig. 6. As the wavenum-
ber grows, the error increases for all orders of the elements. In the case of the classical finite element discret-
ization, i.e., r = 1, the error becomes very large as the wavenumber increases. This happens even if wh is kept
constant. With higher-order elements, the pollution effect is not eliminated, but the accuracy is significantly
better, even for high angular frequencies. As seen in Fig. 6, when the error of time discretization is eliminated,
the same level of accuracy is attained with the CD and the RK time discretizations. This is also true for high
wavenumbers. With the RK time discretization, this level of accuracy is achieved with lower computational
cost than with the CD time discretization (see Fig. 7). From Figs. 6 and 7, we further notice that CPU time
for the algorithm grows with the wavenumber. The reason for this is the increase in number of CG iterations.

6.2. Elastic scattering by a rigid obstacle

We now d